IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021 677

Arnold: An eFPGA-Augmented RISC-V SoC for
Flexible and Low-Power IoT End Nodes

Pasquale Davide Schiavone™, Davide Rossi™, Member, IEEE, Alfio Di Mauro

, Frank K. Giirkaynak,

Timothy Saxe, Mao Wang, Ket Chong Yap, and Luca Benini, Fellow, IEEE

Abstract— A wide range of Internet of Things (IoT) applica-
tions require powerful, energy-efficient, and flexible end nodes
to acquire data from multiple sources, process and distill the
sensed data through near-sensor data analytics algorithms, and
transmit it wirelessly. This work presents Arnold: a 0.5-to-
0.8-V, 46.83-uW/MHz, 600-MOPS fully programmable RISC-V
microcontroller unit (MCU) fabricated in 22-nm Globalfoundries
GF22FDX (GF22FDX) technology, coupled with a state-of-the-
art (SoA) microcontroller to an embedded field-programmable
gate array (eFPGA). We demonstrate the flexibility of the
system-on-chip (SoC) to tackle the challenges of many emerging
IoT applications, such as interfacing sensors and accelerators
with nonstandard interfaces, performing on-the-fly preprocessing
tasks on data streamed from peripherals, and accelerating
near-sensor analytics, encryption, and machine learning tasks.
A unique feature of the proposed SoC is the exploitation of
body-biasing to reduce leakage power of the eFPGA fabric by
up to 18x at 0.5 V, achieving SoA state bitstream-retentive sleep
power for the eFPGA fabric, as low as 20.5 uW. The proposed
SoC provides 3.4x better performance and 2.9x better energy
efficiency than other fabricated heterogeneous reconfigurable
SoCs of the same class.

Index Terms—Edge computing, embedded systems, field-
programmable gate array (FPGA), Internet of Things (IoT),
microcontroller, open source, RISC-V.

I. INTRODUCTION

HE end nodes of the Internet of Things (IoT) require

energy-efficient, powerful, and flexible ultralow-power
computing platforms to deal with a wide range of near-
sensor applications [1]. These system-on-chips (SoCs) must
be able to connect to low-power sensors such as arrays
of microphones [2], cameras [3], and electrodes to monitor
physiological activities [4], to analyze and compress data using

Manuscript received August 26, 2020; revised December 28, 2020; accepted
January 31, 2021. Date of publication March 4, 2021; date of current version
April 1, 2021. This work was supported by the European Union’s Horizon
2020 Research and Innovation Program through project “OPRECOMP” under
Grant 732631. (Corresponding author: Pasquale Davide Schiavone.)

Pasquale Davide Schiavone, Alfio Di Mauro, Frank K. Giirkaynak, and Luca
Benini are with the Integrated Systems Laboratory, Department of Information
Technology and Electrical Engineering (D-ITET), ETH Ziirich, 8092 Ziirich,
Switzerland (e-mail: pschiavo@iis.ee.ethz.ch).

Davide Rossi is with the Energy-Efficient Embedded Systems Laboratory,
Department of Electrical, Electronic and Information Engineering (DEI),
University of Bologna, 40126 Bologna, Italy.

Timothy Saxe, Mao Wang, and Ket Chong Yap are with QuickLogic
Corporation, San Jose, CA 95131 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2021.3058162.

Digital Object Identifier 10.1109/TVLSI.2021.3058162

advanced algorithms and transmit them wirelessly over the
network. Signal processing algorithms are executed in such
devices to reduce complex raw data to simple classifications
tags that classify data, extract only relevant information (e.g.,
[5]), or filter, encrypt, and anonymize data. Analyzing and
distilling information as it moves from [oT devices to the cloud
brings multiple benefits in power, performance, and bandwidth
across the whole IoT infrastructure.

Depending on the constraints of the application such as
flexibility, performance, power, and cost, IoT computing
platforms can be implemented as hardwired application-
specific integrated circuits (ASICs), programmable hardware
(or soft-hardware) on field-programmable gate arrays
(FPGAs), or as software programmable on microcontroller
units (MCUs). Hardwired, fixed-function ASICs offer the
best energy and energy efficiency, but they lack versatility
and require long time-to-market [6]. Hence, their usage is
preferred in highly standardized applications or specialized
single-function products.

On the other side of the spectrum, MCUs are the de
facto standard platforms for IoT applications due to their
high versatility, low power, and low cost. State-of-the-art
(SoA) MCUs can offer competitive power—performance—area
(PPA) figures by leveraging parallel near-threshold comput-
ing (NTC) [7], and advanced low-power technologies such
as fully depleted silicon-on-insulator (FDSOI) coupled with
performance—power management techniques such as body-bias
[8] and power-saving states [9]. As it has been shown in
[8]-[11], these techniques make possible the use of MCUs
on edge-computing devices, meeting PPA constraints for a
wide range of applications in the IoT domain, yet providing
high versatility. To increase the performance, MCUs are often
customized with on-chip full-custom accelerators that speed
up the execution of part of the applications as, for exam-
ple, neural networks [12], frequency-domain transforms [13],
linear algebra [14], and security engines [15]. The resulting
heterogeneous system has thus both the flexibility of MCUs,
and competitive performance and efficiency of hardwired
ASICs on specific domains.

FPGAs fill the gap between ASICs and MCUs as they offer
versatility via hardware programmability (which usually needs
more specialized design skills), and they allow exploiting
spatial computations typical of ASICs designs, as opposed to
sequential execution. For these reasons, FPGAs are used in a
wide range of applications, from machine learning [16]-[18],
sorting [19], and cryptography accelerators for data centers

1063-8210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2931-0435
https://orcid.org/0000-0002-0651-5393
https://orcid.org/0000-0001-6688-1603

678 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

[20] to smart instruments [21], analog-to-digital converters
[22], low-power systems for wearable applications [23], and
control-logic systems [24], and for implementing smart periph-
erals connected to SoCs [25], [26].

While FPGAs have been traditionally designed as stand-
alone components, a new class of devices featuring FPGAs
extended with central processing units (CPUs), epitomized by
the highly successful Zynq “all programmable SoC” product
family [27], penetrated the embedded devices market during
the last decade. These heterogeneous SoCs make the split
of computational and control tasks between hardware and
software more comfortable, leveraging parallel computing
of the FPGA resources in compound with the support of
operating systems. However, such SoA SoCs are meant for
high-end embedded applications, being much more power-
hungry (between few hundreds of mW and watts) than
always-ON IoT end nodes (few tens of mW). Recently,
the increased integration density of modern silicon tech-
nologies allowed a reasonably sized FPGA array (so-called
embedded FPGAs or eFPGAs) to be integrated as part of
mid-end SoCs such as the Microsemi SmartFusion2, still
exceeding power constraints of most IoT end-nodes applica-
tions [28]. Moreover, existing solutions have limited options
for integrating the eFPGAs at the system level, designed for
standalone operation, connected to I/O peripherals such as
PCle to loosely coupled memories as DDR, and either low-
bandwidth or high latency system bus such as the AMBA
AHB or AXI, respectively.

In this article, we present Arnold: a RISC-V-based MCU
extended with an eFPGA for always-ON edge-computing sys-
tems, implemented in Globalfoundries GF22FDX (GF22FDX)
technology, tackling the challenges highlighted above. The
SoC targets the mW-range “loT end-node” MCU profile,
where high processing capabilities need to be coupled with
low-idle power consumption, high energy efficiency, and high
versatility. To this end, in addition to more traditional con-
nections to the I/O PADs, we propose a novel approach to
integrate the eFPGA through a high-bandwidth, low-latency
interconnect, enabling data sharing with the cores in a single
cycle, and with an autonomous I/O DMA subsystem, enabling
heterogeneous computing both on tightly coupled memory
and I/O data. Moreover, to address the power—performance
scalability challenge, power domains and technology knobs
for leakage power and performance, such as body biasing,
are exposed at the system level to switch-OFF or reduce the
eFPGA leakage power consumption (its major contribution)
while keeping the state during idle periods by up to 18x and
to dramatically scale the energy/performance of the processing
system to deal with computing peak requirements. Fig. 1
shows a high-level view of the Arnold architecture with the
eFPGA connections highlighted.

The contribution of the presented heterogeneous SoC design
and silicon demonstrator is summarized as follows.

1) Architectural Flexibility: To enable architectural flexibil-
ity that fully exploits the configurable logic, the eFPGA
is connected with the rest of the system with different
interface options on the dataplane: 1) a direct connection

Access to GPIO to extend the
peripheral subset

SRAM CPU ROM
Core Accelerator tightly
coupled with system memory
. ! ! ! .
< >
Accelerator connected to v
DMA engine for smart peripherals
1 T
Program and configuration
control port Memory I GPIO I I TlMERI
interface
2y o
el = o
el = 3 >
T ova | = | efPea [He I
m @ o @©
2 = [OF
= 8
[%2]
1(a
110
interface

Fig. 1. MCU-eFPGA SoC architecture. eFPGA connections toward the MCU
and to the external peripherals are highlighted.

to the /O DMA engine on the SoC—to process and
filter data streams on their way from/to on-chip shared-
memory buffers in memory; 2) a high-bandwidth, low-
latency interface to the memory of the RISC-V core—
to interleave with zero-copy FPGA-accelerated parallel
processing and sequential processing by the core; and
3) a direct GPIO interface to implement master or slave
peripheral ports for nonstandard off-chip digital sen-
sors or actuators. On the control plane, we provide:
1) an AMBA Advanced Peripheral Bus (APB) interface
to allow the user to configure the mapped soft-hardware
and 16 interrupts to notify the CPU.

2) Power Management: Due to reverse body-biasing (RBB)
enabled by conventional-well FDSOI technology used
for the physical implementation of the eFPGA fabric,
leakage power can be reduced by 18x to 20.5 uW
(featuring a fully state retentive bitstream) when eFPGA
functionality is not required.

3) Power and Energy Efficiency: For 1oT end-node mis-
sion profiles, the SoC achieves SoA performance and
efficiency, leveraging a voltage and frequency scalable
architecture from 0.5 to 0.8 V, with a peak energy
efficiency of 46.83 yW/MHz at 0.52 V and a maximum
frequency of 600 MHz at 0.8 V, within a power envelope
of 22 mW. The proposed SoC achieves 3.4x better
performance and 2.9 x better energy efficiency than SoA
MCUs augmented with eFPGA built for the same power
target applications [29]—[31].

4) Use Cases: We demonstrate the high performance and
flexibility of the proposed system on a set of use cases
where we exploit the eFPGA subsystem as an [/O
subsystem accelerator, a custom I/O peripheral, and a
tightly coupled CPU accelerator, improving the energy
efficiency of the system from 2.2x to 42.2x.

The remainder of this article is organized as follows.
Section II provides a review of related works. In Section III,
the architecture of the proposed SoC is described, including all
its components. In Sections IV and V, the software and tools
for the proposed SoC, its physical design, and silicon

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

SCHIAVONE et al.: ARNOLD: eFPGA-AUGMENTED RISC-V SoC FOR FLEXIBLE AND LOW-POWER IoT END NODES

679

TABLE I

SUMMARY OF RELATED WORK: LEFT): MCUS PROGRAMMABLE VIA SOFTWARE AND THEIR ACCELERATORS. CENTER: FPGAS PROGRAMMABLE VIA
SOFT-HARDWARE DESIGN. RIGHT: EFPGAS PROGRAMMABLE VIA SOFT-HARDWARE DESIGN

MCU FPGA eFPGA
Single Core [11], [32], [33], [34] Low Power [35], [36] StandAlone [37], [38], [39], [40]
SW Accelerator [9], [41] Low Power SoC [28] MCU SoC [29], [30], [31],
HW Accelerator [12], [42] HP [43] This Work
HW/SW Accelerator [44], [45] HP SoC [27] HP SoC [46]
measurements are described respectively, = whereas, target at the lowest energy budget [47]. Finally, heteroge-
in Section VI, use cases for the proposed work are neous systems, such as GAP-8 from GreenWaves Technologies

reported as application examples. This article concludes in
Section VII.

II. RELATED WORK

In this section, we review devices that define the boundaries
of its design space: MCUs, FPGAs, eFPGAs, and hetero-
geneous reconfigurable SoCs. Table 1 shows a summary of
related works.

A. Microcontroller Units

In the context of edge-computing systems, MCUs need
to provide significant performance within a limited power
budget, and the flexibility needed to cope with a wide variety
of sensors and algorithms. Most off-the-shelf (OTS) MCUs
use energy-efficient CPUs based on ARM Cortex-M family
of cores, such as the NXP i. MXRT1050 [32], the STMicro-
electronics STM32L.476xx family [33], or the Silicon Labs
EFM32 Giant Gecko 11 [42], all featuring a power budget
within a few tens of mW. To interface with a large variety of
external devices, these systems offer a wide set of periph-
erals, such as 12C, UART, SPI, and GPIOs. SoAs energy-
efficient MCUs optimized for ultralow-power (3 ©W/MHz)
[11] and performance (938 MHz) [34] have been implemented
in FDSOI technology leveraging body-biasing to compensate
process—voltage—temperature (PVT) variations and to control
performance and power to achieve higher energy efficiency.

Although software provides high versatility, some appli-
cations still need performance that a single CPU cannot
deliver. For this reason, several MCUs are extended with
custom accelerators, for example, the binary neural-network
accelerator presented in [12] or the cryptography engine
integrated into [42]. To improve flexibility with respect to
dedicated accelerators, there are MCUs that combine multiple
heterogeneous CPUs managing different tasks, for example,
the NXP i.MX 7ULP Applications Processor [41], which
combines an application ARM processor (ARM Cortex-A7)
with a real-time CPU (ARM Cortex-M4) for performance and
power trades off. Other approaches leverage parallel clusters
of processors to improve the energy efficiency of near-sensor
analytics workloads, such as Mr.Wolf [9], featuring an eight-
core cluster based on DSP-enhanced RISC-V cores controlled
by a smaller core managing the I/Os, the runtime, and SoC
control functions. These systems can choose to divide the
workload as a subset of processors to meet the performance

[44] and Fulmine [45], combine both custom and parallel
software programmable accelerators providing a step forward
for performance and flexibility of embedded platforms for
signal processing. Although these platforms are compelling
and flexible to run signal processing tasks for typical end
nodes, they are less efficient than reconfigurable devices such
as FPGAs when dealing with nonstandard sensors.

B. Field-Programmable Gate Arrays

FPGAs are reconfigurable devices that can exploit spatial
computations typical of ASIC designs but still retain program-
mability. They range from high-end FPGAs used for accelera-
tion of high-performance workloads to ultralow-power, small,
and low-cost technology implementations, as discussed further
in this section.

High-end FPGAs, such as the Xilinx Virtex Ultrascale
devices [43] and the Xilinx Zyng-7000 SoC [27], have millions
of lookup tables (LUTs), flip-flops (FFs), DSP-blocks, CPU,
and SRAM macros containing megabytes of memory. They
have typical power consumption in the order of tens of watts
[48], and they are usually used as high-performance accelera-
tors on servers connected via Ethernet or PCI interfaces [49].

In the low-power domain, FPGAs are typically realized
with a less aggressive process than high-end FPGAs. They
are usually smaller, cheaper, and, as a result, have lower
performance than the others. Examples are the Microsemi
IGLOO nano [35], which has up to 3k logic elements,! or the
Lattice Semiconductor iCE40 UltraLite [36], which has more
than 1k of LUTs+{flip-flops. Both consume from a few 4W to
hundreds of mW. These FPGAs are used to extend the 1/O
subsystem of embedded controllers [50], even with simple
data preprocessing engines to lower the bandwidth coming
from sensors [23], [26]. In the low-end space, FPGAs can
also be extended with hard or soft CPUs to leverage HW/SW
codesigned IoT nodes. Hard-CPUs are used in the Microsemi
SmartFusion2 SoC 65 nm [28], which proposes an MCU-
class (ARM Cortex-M) core running at 166 MHz and an
FPGA with DSP blocks and up to 150k logic elements,
656 kB? of memory, and power consumption in the order
of hundreds of milliwatts. Examples that use the Microsemi
SmartFusion2 SoC can be found in [51], which proposes a
system where most of the tasks are executed by the ARM core,

One logic element is composed of one four-input LUT and one FF.
2512 bytes of nonvolatile memory.

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

680 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

whereas the FPGA is used for accelerating critical network
kernels. In [52], the operating system and user interfaces run
in software, whereas the FPGA is used to collect sensor data,
extract features, and calculate the nearest neighbor on the
extracted information. The system that runs at 160 MHz con-
sumes 4.96 mW on the CPU part and 153.97 mW on the FPGA
side. While their power consumption is within the range of
IoT applications, these FPGAs are limited in performance and
thus not suitable for computationally intensive applications.
To enrich the functionalities of deeply embedded SoCs, FPGA
vendors started to develop and commercialize FPGA IPs that
can be integrated into SoCs, presented in Section II-C.

C. eFPGAs

eFPGAs are FPGA IP cores specifically meant to be inte-
grated into SoCs to extend them with programmable logic.
Unlike the FPGAs presented in Section II-B, eFPGAs are not
meant to be used standalone but are designed with the goal
of enhancing the capabilities of the SoCs. Vendors provide
tools to allow eFPGAs to be customized to the SoCs and
properties like the number of arrays, with a given number of
LUTs, DSP blocks, FFs, I/0 pins, and so on can be configured.
eFPGAs can be provided as soft-IP [31], [37], described in
RTL and synthesized with the rest of the system, or hard-IP
[29], [30], [46] as hard-macros with predetermined physical
layout, featuring a different tradeoff between performance and
cost.

For example, in [31], a soft-IP is complementing an MCU
for power control applications is implemented using a 90-nm
bipolar CMOS DMOS (BCD) technology. This eFPGA is
relatively small (only 96 four-input LUTs and 192 FFs) and
connected exclusively to the I/O subsystem. Several companies
are providing hard-IP blocks, as Achronix [38], which provides
7-nm FinFET eFPGAs, Flex-Logix [39], which provides from
12- to 180-nm eFPGAs macros, QuickLogic Corporation [40],
which provides from 22- to 65-nm core IPs, and Menta [37],
which provides IPs from 10 to 90 nm. Several heterogeneous
reconfigurable SoCs have been presented in the last years,
ranging from high-performance systems to low-power embed-
ded systems. Whatmough et al. [46] presented a 25-mm?
SoC implemented in 16-nm FinFET technology featuring two
ARM AS53 cores, a quad-core datapath accelerator, 4-MB on-
chip SRAM, and a 2 x 2 FlexLogic eFPGA macro featuring
hardwired DSP slices.

In the embedded domain, several solutions have been
proposed in different technology nodes. Borgatti et al. [29]
implemented a 180-nm 20-mm? SoC, where eFPGA is inte-
grated with the CPU pipeline to implement a reconfigurable
application-specific instruction processor (ASIP) SoC, with
the eFPGA implementing custom instructions. In addition,
the eFPGA is connected to the system bus and I/O pads. The
system reports up to 10x performance gain using instruction
extensions to accelerate face-recognition algorithms and 2x
for I/O intensive tasks when dealing with camera peripherals
with preprocessing. Lodi et al. [30] implemented a 42-mm?
SoC in 130 nm, where the CPU pipeline is directly connected
with the eFPGA to implement custom instructions, whereas
a second eFPGA is connected to the system bus and I/O

pads. The system reports up to 15x performance gain and
89% energy saving by exploiting the eFPGAs to accelerate a
set of data processing algorithms. However, as a consequence
of using a mature technology node, the eFPGAs (~15 kGE)
presented in the proposed SoCs feature limited capabilities and
performance.

In this work, we propose an SoC featuring an advanced
microcontroller augmented by an eFPGA for IoT applications
in 22-nm process technology. From an architectural standpoint,
the main differentiating feature of the proposed SoC is in how
the FPGA has been integrated into the system, being able to
act as a tightly coupled memory accelerator for the core via a
fast, low-latency, high-bandwidth (128 bit) interconnect, and
as a I/O preprocessing engine, being connected as a config-
urable peripheral for the /O DMA subsystem. The proposed
solution provides 3.4x better performance and 2.9x better
efficiency than state-of-the-art heterogeneous reconfigurable
SoCs, leveraging the wide voltage range supported by the
22-nm GF22FDX technology. One key feature of the SoC
with respect to SoA-related works is the unique capability to
exploit RBB enabled by the FD-SOI technology to implement
a 20.5-uW state-retentive deep-sleep mode for the eFPGA,
reducing the power overhead of the eFPGA integration. This
point is further discussed in Section V.

III. ARNOLD ARCHITECTURE

The proposed system is built around an in-order RISC-V
core’ based on [53], optimized for signal processing, featuring
a four-stage pipeline, and achieving 3.19 Coremark/MHz and
up to 2.4 8-bit GMAC/s (at 600 MHz). The core implements
the RISC-V 32-bit integer (I), multiplication and division
(M), single-precision floating point (F), and compressed (C)
instruction set architecture (ISA) extensions (RV32IMFC)
[54]. In addition, the core has been extended with cus-
tom instructions to speedup data processing applications,
such as zero-overhead hardware loops, automatic increment
load/store instructions, bit manipulations, and packed-single-
instruction-multiple-data (pSIMD) operations between vectors
of 4 bytes or two half-words at a time. With respect to a closed-
source ISA such as ARM, the open-source RISC-V ISA allows
for custom extensions to achieve higher performance in the tar-
geted applications domain. For example, in [53], the proposed
ISA extensions show 10x better performance than the plain
RISC-V or OpenRISC ISA. Furthermore, the core presents a
higher Coremax/MHz score with respect to the ARM Cortex-
M4 when the GNU GCC compiler is used for both the cores
(3.19 versus 2.55, respectively).

To protect sensitive parts of the system from corrupted
user applications, we extended the CPU with a RISC-V
compliant physical memory protection (PMP) unit that can
control read, write, and execute permissions on regions of the
physical memory. The implemented RISC-V PMP supports all
address matching schemes as: naturally aligned power of two
regions NAPOT (including 4-bytes alignment NA4) and the
top boundary of an arbitrary range TOR. The PMP occupies

3The OpenHW Group CV32E40P is freely downloadable at
https://github.com/openhwgroup/ under the SolderPad license.

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

SCHIAVONE et al.: ARNOLD: eFPGA-AUGMENTED RISC-V SoC FOR FLEXIBLE AND LOW-POWER IoT END NODES

681

A48KB Multibank Interleaved SRAM | o0 oy wad 2G2BSRAM |aa

[

=l

s
w =
=y
z 2

-
el
o
=

ey
EENEEEN

Super Logic Cell (SLC)

N

t 1 t t
XBAR bus l)-
gy LLEEEY
. l | | :
I HYPER_II mPU_] < APB bus }
UART g™ 4 v LR
— : uDMA CPU » S n
Of < = [=/mN]
cae]| EEIHEE &
QsPl | .= CPU Tile o
12C = Peripheral n
s==s—) Subsystem CLOCK MCU 5
CLO| i W) E "
an DC mmm DC snsmnnnns| DC =m e :
gy L o e snan "% - |m ‘ CLOCK TREE
. 10l
L
] [= pY |]
interface interface Confi e -
ARRAY OF
o FPGA ROUTING
3 . S [(EEEE
® MATH \
T Events
] |nteiface ~ o - " " Logic ARRAY
FPGA Subsys s QF LOGIC
. S I T <

Fig. 2. Detailed block diagram of the proposed design. The eFPGA (bottom) connected with the MCU and its private MAC units in a clock domain (CLOCK

eFPGA). Peripherals (center—left) are directly connected to the 4 DMA in the peripheral subsystem and operate on the CLOCK Peri clock domain. The rest
of the system works in the CLOCK MCU domain. The CPU runs the SW and orchestrates the whole system.

only 14% of the total CPU area due to the extra registers
and comparators needed to implement the specifications and
provides much-needed security features for user applications in
the IoT domain. In the proposed SoC, the CPU is responsible
for executing the runtime to manage the system and to
execute user applications to process data or to control external
peripherals, as well as to configure and control the eFPGA
itself.

A. Memory Subsystem

The memory system, composed of 512 kB of static ran-
dom access-memory (SRAM), is shared among the CPU
(instruction and data), the I/O DMA (¢DMA) (RX and TX),
the JTAG, and the eFPGA masters. The memories are slaves
of the system bus, which is based on a single-cycle latency
logarithmic interconnect [55] (XBAR bus in Fig. 2). In case
two or more masters request to access the same slave, a round-
robin arbiter selects the master that first communicates with the
slave to solve the conflict. The shared memory consists of four
word-level interleaved memory banks, each with 112 kB each,
and two memory banks of 32 kB featuring a noninterleaved
address scheme. Every memory bank is a composition of
single-port 4096 x 32 bit words (16 kB) memory cuts opti-
mized for density and power. The chosen interleaving scheme
for the four 112-kB (448-kB) memory portion approximates
a multiport memory access, and it increases the bandwidth
up to 4x when multiple masters are loading or storing data
sequentially, which is the typical case for most digital signal

processor (DSP) applications. When low-latency single-cycle
accesses with no contention are needed, the two private
banks can be used, which offer a bandwidth of 19.2 Gb/s
each. In the proposed MCU, they are used to store private
CPU data such as the stack and instruction binary. In this
way, the interleaved part can be used by the other masters
with no conflicts. This solution avoids the use of power and
area hungry multiport memory cuts, still providing low-latency
access to memory, increasing the total energy efficiency.
A read-only-memory (ROM) has also been implemented to
store the boot instructions responsible for setting the system
upon reset.

B. I/0 Subsystem

The I/0O subsystem is composed of a broad set of peripher-
als that include JTAG, HyperRam, UART, Camera Interface,
quad-SPI, and I2C, which communicate with the shared-
memory system through an autonomous ¢ DMA based on
[56]. The 4 DMA is a smart engine that allows peripherals
to control transfers to/from memory without the need for
the CPU continuous control. It has two ports toward the
main memory: one to transmit and one to receive data from
peripherals. At 600 MHz, the © DMA has an aggregated
bandwidth equal to 38.4 Mb/s. Except for the JTAG, which
is directly connected to a master port of the system bus,
the other peripherals are controlled by the 4 DMA core, which
handles memory requests in a time-multiplexed fashion. The u
DMA control registers are used to select the active peripheral,

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

682 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

the peripheral clock frequency, number of transfers, and so
on. Other peripherals, such as SoC control registers, timers,
GPIOs, and event units, are also included in the proposed
MCU and accessible through the APB bus, which is in the
same MCU clock domain as the peripherals are not timing
critical, and the clock-tree implementation gets simplified.

C. Clock Subsystem

The system includes three compact and energy-efficient
frequency-locked loops (FLLs) based on [57]. They take as
input an external 32-kHz reference clock and provide internal
clocks up to 2.1 GHz. Since Arnold does not have any
external communication channel that it needs to synchronize
to, there are no advantages of using a more complex/costly
phase-locked loop (PLL)-based clocking solution. Arnold uses
one FLL to provide the clock to the eFPGA: one for the
peripheral subsystem and one for the remaining modules as
CPU, memories, buses, and so on. The eFPGA has access to
six clock sources: four from external GPIOs, one from the
eFPGA FLL block, and one from an integer frequency divider
from the same FLL. The user can choose the preferred clock
sources.

D. eFPGA Subsystem

The eFPGA is tightly coupled to the system to minimize the
overhead of communications with the CPU. It has 3712 pins
to be used to connect the IP with the rest of the SoC. In this
work, we designed a novel, highly flexible four-mode SoC
interface to have the following:

1) an I/O interface with direct connections toward the pad
frame of the system, enabling the implementation of
custom off-chip interfaces;

2) a memory interface suitable for shared-memory accel-
erators implemented on the FPGA logic and tightly
coupled with the CPU;

3) an /O DMA interface suitable for implementing I/O
filtering functions for data streamed into the system from
the standard 1/O;

4) an APB configuration and control interface suitable for
controlling the programmable logic.

The I/O interface is made of 41 sets of three signals
(input, output, and direction) from the eFPGA to the GPIOs.
This interface is used for custom I/O protocols, which are
challenging to implement efficiently in SW due to latency
constraints. Each I/O pad can be either used by a peripheral
(quad-SPI, Camera Interface, and so on), by software (Core
GPIO), or by the eFPGA. Multiplexers controlled by SoC
registers drive the functionality mode of each pad.

The memory interface implements the protocol presented
in [55]. The proposed SoC has four interfaces connected as
master ports in the bus, providing up to 128-bit memory
operations (load or store) per transaction. Access to the on-
chip SRAM is provided through four 32-bit four-word dual-
clock first-input, first-output (FIFO) to allow the MCU and
the eFPGA subsystem to operate at independent frequencies.
This is a crucial feature since the eFPGA usually runs at a

lower frequency than the rest of the SoC and its frequency
depends on the user design. For security reasons, the eFPGA
memory interface has only access to SRAM banks and not to
APB peripherals and boot ROM.

The I/O DMA interface is composed of one receive (RX)
and one transmit (TX) bus featuring a ready/valid handshak-
ing, plus one 32-bit configuration bus as described in [56]. The
configuration bus allows controlling the peripherals mapped
into the eFPGA with external registers, which can avoid
the use of the APB interface described next, and thus save
resources. In addition, this interface can be used to stream
data through the ¢ DMA without using eFPGA resources for
the address generation logic as it would with the memory
interface. In this case, the u DMA transfers data from the
eFPGA to memory (and vice versa) linearly. Communication
between the 1 DMA and the eFPGA happens using two 32-bit
four-word dual-clock FIFOs.

Designs mapped into the eFPGA (as accelerators or periph-
erals) can be controlled by registers through the APB config-
uration and control interface. Such an interface is made of a
7-bit address, 32-bit data read, and data write, write-enable,
ready, peripheral select, and enable signals (75 pins). One
32-bit four-word dual-clock FIFO is used for communications
between the MCU and the eFPGA.

In addition to the four interfaces mentioned above,
the eFPGA can generate 16 events to interact asynchronously
with the CPU, avoiding inefficient polling operations and
saving power. In fact, the eFPGA event pins are connected to
dual-clock event-propagators that notify the events to the CPU
as dedicated interrupts requests. The interrupt service routines
are user-defined, and they can be used to handle the eFPGA
requests, for example, starting a new I/O transaction or pro-
gramming the newly acquired data pointers to start processing
them in case of accelerator design.

To improve computational arithmetic density, two syn-
thesizable parallel-vectorial multiply-and-accumulate (MAC)
accelerators are connected to the eFPGA to compute four
8-bit, two 16-bit, or one 32-bit MAC operations for each
unit. The two MAC blocks are connected via 310 pins each,
which controls the MAC blocks, whether data come from the
eFPGA or the MAC buffers, the input and output data, and
the vector mode (8, 16, or 32).

The CPU programs the eFPGA through another APB
interface. Such master interface is connected to the
eFPGA fabric configuration block (FCB), which is responsible
for controlling the eFPGA, managing the power procedures,
and reporting the actual status of the eFPGA. The eFPGA
binary is 225.5 kB, small enough to be contained in the
on-chip SRAM. To program the macro, the CPU reads the
binary from an external memory to the on-chip memory, and
then, the CPU reads the binary array and writes its content
to the APB FCB via noncritical load and store instructions.

The eFPGA fabric is organized in four quadrants with
dynamic reconfiguration capabilities, each one composed of
an array of 16 x 16 superlogic cells (SLCs). Each SLC has
four logic cells that are organized in two sublogic clusters:
two instances of logic cell A (LCA) and two instances of logic
cell B (LCB), as shown in Fig. 2. Both LCA and LCB also

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

SCHIAVONE et al.: ARNOLD: eFPGA-AUGMENTED RISC-V SoC FOR FLEXIBLE AND LOW-POWER IoT END NODES 683

TABLE 11
Arnold ACTIVE POWER STATES

Power Mode vdd vdd FBB RBB

[V] eFPGA [V] [V] [V]
eFPGA Off 0.5-0.8 0 0-04 0
eFPGA Retentive 0.5-0.8 05-08 0-04 0-14
eFPGA On 0.5-0.8 05-0.8 0-04 0

include one register and multiple multiplexers that enable the
logic cell to perform different functions (e.g., combinatorial,
sequential, or both). If a logic cluster or a highway network
within the SLC is not used, it is powered OFF to save static
power. A shared register clock, set, and reset signals for all
four logic cells helps reduce routing congestion. If the logic
cluster or highway network within the SLC is not used, it is
powered textscoff to save static power.

E. Power Domains

The Arnold chip can select different power states to mini-
mize the eFPGA power overhead or maximize performance.
The MCU and the eFPGA have different supply voltage
pins that are driven by an external power manager. Table II
shows the available power states. When both active, the MCU
and the eFPGA operate at the same supply voltage, ranging
between 0.5 and 0.8 V (eFPGA On). However, to minimize the
power overhead, the eFPGA can be switched textscoff when
applications do not require it (¢FPGA Off).

The eFPGA has been implemented with conventional-well
transistors, which allows reducing the leakage power while
preserving the configuration during state-retentive deep sleep
states by applying RBB from the external power manager
(eFPGA Retentive). With respect to the eFPGA Off power
state, the bitstream is kept in the eFPGA. When the application
needs the eFPGA, the external power manager is asked to
set the eFPGA supply voltage equal to MCU one and to set
the RBB to zero. This strategy avoids costly reprogramming
operations that would be needed if the eFPGA is switched
textscoff. On the other hand, the MCU has been implemented
in flip-well transistors. Thus, forward body-biasing (FBB) is
applied to the CPU, memory, and the rest of the logic to
increase performance [34], [58].

The different transistors’ flavor allows reducing the power
overhead on the large-area eFPGA when applications do not
need it. In contrast, it allows the MCU to achieve higher
performance in applications that have tight constraints and
must run fast to completion.

The proposed chip relies on an external power manager.
The MCU configures its power modes through SPI to enable
dynamic voltage-frequency scaling (DVFS) and body-biasing
policies. Future version of the SoC could make an on-chip
body-bias generator [59] and power converters [9]. Fig. 3
shows how the Arnold chip is connected to an external power
manager, the supply voltages of the main components, and the
body-biasing pins.

Vdd Vdd
MEMORY T CPU T
L FBB |—FBB
) i ! N
l i Vdd
110 | T
SUBSYSTEM [—F&8
eFPGA |y crrea
| T
_rBB
[I l L
(Vdd_FPGA RBB Vdd FBB
Power Manager
- J

Fig. 3. Arnold power modes. Supply voltages and body-bias pins are driven
by an external power manager.

1V. eFPGA SOFTWARE AND TOOLS

To use the eFPGA in the Arnold SoC, the user writes HDL
code (VHDL, Verilog, or SystemVerilog) and synthesizes it
with Mentor Graphics Corporation® Precision RTL Synthesis
OEM Quicklogic tool. The synthesized design is then placed
and routed with the QuickLogic Aurora Software Tool Suite
(Aurora). The user must map each of the soft-module interface
pins to the corresponding pin of the eFPGA hard-macro. For
example, the user may define the memory interface request
signal as “MemREQ_output,” in the Aurora tool, and the user
may specify that the signal is connected to the third memory
interface of the eFPGA specifying that “MemREQ_output” is
connected to “tcdm_req_p3_o” pin. The eFPGA pin has been
assigned to its interface functionality at SoC design time to
optimize the place and route phase. Once the constraints and
the pin mapping have been defined, Aurora performs logic
optimization on the synthesized design, places, and routes
it. It also generates static timing analysis and the bitstream
containing the binary of the user design. The binary is then
loaded into the main memory by the CPU. The CPU stores
each binary word into the bitstream registers. Once the eFPGA
has been programmed, the CPU can control the design with
user-defined registers mapped into the eFPGA APB interface
described above to start the design, to check the status, and
so on. application programming interfaces (APIs) have been
developed to provide C procedures for the user. In particular,
functions to RESET the eFPGA, to load the bitstream, and to
wait for the end of the eFPGA computation (wait_fpga_eoc)
have been implemented for fast integration into the user
application. The wait_fpga_eoc routine leverages the “wait for
interrupt” (WFI) RISC-V instruction to clock-gate the CPU to
save dynamic power. The compiler used for software is based
on the GNU GCC 7.1.1 version, which includes the custom
extensions described in [53].

V. ARNOLD PHYSICAL DESIGN

The proposed SoC fabricated in GF22FDX 10 Metal tech-
nology occupies 3 x 3 mm?. The synthesis tool used for this

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

684 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

project is Synopsys® Design Compiler 2017.09, whereas the
place and route tool used is Cadence Innovus 18.11. The
design has been closed at 430 MHz for the MCU side and up to
100 MHz for the eFPGA soft-designs. Worst case conditions
at 0.72 V for setup constraints and best case conditions at
0.88 V for hold constraints between —40 °C and 125 °C have
been used to guarantee the performance across the process,
voltage, and temperature variations.

The die picture and floorplan of the chip are shown in
Fig. 4. The eFPGA macro is 2 x 2 mm?, and it has been
placed in the bottom left of the design. The memory cuts
have been placed to the right of the eFPGA. The eFPGA
memory interface pins have been assigned to the right part of
the eFPGA to minimize routing efforts and to minimize the
congestion issue as the path toward the memory is the most
critical. The core has also been automatically placed close to
the memory to minimize timing penalties. The eFPGA pins for
the MAC blocks accelerators have been placed to the top part,
where the local math accelerator SRAM buffers have been
placed. On the left part of the eFPGA, the pins toward the u
DMA, the user APB interface, and the 16 events pins have
been assigned. GPIOs pins are spread along the four sides
of the eFPGA. The six clock pins of the eFPGA are located
three on the top and three on the bottom side. The three FLLs
have been placed on the top part of the chip, whereas the
standard cells have been automatically placed by the place and
route tool.

The effective area occupied by the chip is 5.11 mm?,
of which the eFPGA macro occupies 78% (4 mm?) and
the MCU 22% ((1.11 mm?). The main memory occupies
14.46% of the system area, whereas the I/O subsystem and the
CPU take only 0.43% and 0.54%, respectively. The eFPGA
subsystem components occupy 1.26% of MCU area. The
eFPGA subsystem is a set of modules that interact directly
with the eFPGA macro, dual-clock FIFOs, the FCB, the MAC
accelerators (including memory buffers), and clock multiplex-
ing logic. Table III shows the area distribution of the chip.

The GF22FDX technology supports body biasing to mod-
ulate the tradeoff between operating frequency and leakage
power dynamically. As opposed to traditional bulk technolo-
gies, due to the buried oxide providing dielectric isolation of
the source and drain, the back-bias voltage can be varied over
a wide voltage range from —1.8 V using conventional-well
transistors adopted in the eFPGA subsystem to +1.8 V flip-
well transistors adopted in the CPU subsystem. RBB is applied
from an external source to minimize the eFPGA leakage power
overheads while preserving the configuration. On the other
hand, FBB is applied to the CPU, memories, and the rest of
the logic to increase performance.

A. Performance and Energy Efficiency

In this section, measured results at room temperature from
the implemented chip are reported and discussed. Performance
and power results have been measured using an Advantest
SoC V93000 ASIC tester. Fig. 5 (left) shows the maximum
frequency, power consumption, and power density of the MCU
during the execution of a matrix multiplication at different

TABLE III
AREA DISTRIBUTION OF THE MAIN COMPONENTS OF ARNOLD

Module Area [um?] Percentage
CPU 27"186 0.54%
Main Memory 734232 14.46%
I/0 DMA 21’755 0.43%
eFPGA subsystem 63’946 1.26%
PAD Frame 229’519 4.52%
eFPGA Macro 4’000°000 78.79%

3mm

Memory, /O Ihterface =22

WE W

Fig. 4. Die photograph of the proposed design with the main components
and eFPGA pins highlighted.

supply voltages. Measured results at ambient temperature
show a maximum frequency of 135 MHz and a power
consumption 11.88 #W/MHz at 0.49 V, up to a maxi-
mum of 600 MHz at the nominal 0.8 V while consuming
26.18 £W/MHz. The maximum frequency at 0.49 V is compa-
rable with commercial single-core MCUs performance while
achieving very low power consumption due to voltage scaling.
When high performance is needed, 600 MOPS can be achieved
at a maximum power consumption of 16 mW. The leakage
power of the whole MCU ranges from 0.53 mW (33%) to
2.39 mW (15%) at 0.49 and 0.8 V, respectively. Fig. 5(g)
shows the effect of the FBB on the MCU power consumption,
and Fig. 5(h) shows the effect of the FBB on the frequency.
The MCU can run up to 20% faster at 0.6 V at the price
of 43% higher power consumption, whereas the effect of
FBB is smaller when applied at 0.8 V (only 5% faster) for a
maximum frequency of 630 MHz. The effect of the magnified
impact of body biasing at low voltage is a well-known effect
seen in near-threshold FD-SOI chips [60].

Fig. 5 (center) shows the eFPGA measured results. Fig. 5(d)
shows the maximum frequency of two different designs:
FF2SOC is an eight-way parallel 32-bit accumulator that reads
values from the SoC memory and accumulates them in eight
different registers. The signature can be read with the APB
interface; FF2FF is a nine bit counter that divides the eFPGA
clock by 512 and drives a GPIO with the divided clock.

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

SCHIAVONE et al.: ARNOLD: eFPGA-AUGMENTED RISC-V SoC FOR FLEXIBLE AND LOW-POWER IoT END NODES 685
Max Frequency MCU Max Frequency eFPGA Forward BB on uC
©Max Freq MCU ©@Max freq FF2S0C 3¢Max Freq FF2FF ©08V #0.7V %0.6V
700 500 @ 50%
o 800 7 400 * T 40% @
< 500 % >
= = >
= = 300 £ 30% 3
5 40 5 ,,(g 0% T
g 0 g 200 S 20% * 2 ©
8 200 g)
£ 100 i 100 g 10%) &
0 0 S we
0,45 0,55 0,65 0,75 0,85 05 0,55 06 065 0,7 0,75 08 0,85 0 0,1 0,2 0,3 0,4 0,5
VDD [V] VDD [V] FBB [V]
(a) (d) (g)
Power MCU Power eFPGA (FF2S0OC) Forward BB on uC
©Power at 90% max freq ©Dynamic Power # Leakage Power ©Power at 90% max freq 3 Dynamic Power ©® Leakage Power —_ ©Q08V #0.7V %06V
9
20,00 7,00 g 25%
6,00 20% @
= 15,00 5,00 E
= = 2 15% *
= 10,00 =400 E-)
g 10 g 300 = 10% *
& & 200 g 1 %
5,00 o0 § 5% * at ® o
g &
0,00 0,00 g 0% ® ©
0,85 045 0,55 0,65 0,75 085 * 0 0,1 0,2 0,3 04 0,5
VDD [V] FBB [V]
(b) (e) (h)
Power Density MCU Power on different utilization rate Reverse BB on FPGA
©Power Density ©Power@80MHz ~ @Leakage Power 3Dynamic Power ©Lkg Pur @0.8V @Lkg Pwr @0.7V 3Lkg Pwr @0.6V # Lkg Pwr @0.5V
- 2,50
= ;gg e oo 500 @
i 45 5’00 \%‘3 © dg;n% E 2,00 RBB more efficient at low voltage
= g gomine== T ateg 5 150
Zw 400 © % B S5
8 g 300 o) * o 9100 © O
g 200 9 ® ® gy %6 %09 58%
S 15 ' R 050 , Ky Qo ®000pp ==
5 000 0,00 FiveReneeees®
0,45 0,55 0,65 0,75 0,85 0 10 20 30 40 50 60 70 0 0,5 1 15 2
VDD [V] UTILIZATION RATE [%)] RBB [V]
(c) i} [0)
Fig. 5. (a) Frequency, (b) power consumption, and (c) energy efficiency with respect to the supply voltage of the MCU part of the proposed design. In the

center, (d) frequency and power of the eFPGA macro with respect to (e) supply voltage and power with respect to (f) utilization rate. The effect of the FBB
on (g) power and (h) frequency on the MCU. (i) Effect of RBB on the eFPGA leakage power during state-retentive deep-sleep mode.

The designs are different as the FF2SOC communicates with
synchronous elements in the SoC (dual-clock FIFOs), and
thus, its maximum frequency is bounded by the internal delays
of the eFPGA and the logic outside its boundary, whereas
FF2FF has been designed to measure only the FF to FF delay,
without considering the propagation and setup timing of the
eFPGA and the external logic at its boundary. The output of
the Q-pin of the MSB FF of the nine bit counter is directly
connected to the GPIO, and the frequency is measured with an
oscilloscope. From measurements, we determined a maximum
frequency of 475 MHz at 0.8 V and 260 MHz at 0.65 V.
FF2S0OC occupies 15% of the internal eFPGA resources and
it can run from 26.38 MHz, consuming 34.34 ¢W/MHz at
0.52 V, to 126.88 MHz at 0.8 V consuming 47.98 ¢W/MHz
[see Fig. 5(e)].

The eFPGA FF2SOC leakage power is 0.38 mW at 0.5V,
up to 2.18 mW at 0.8 V. The power has been measured
separately from the rest of the system as the power grid
stripes of the eFPGA are different from the MCU ones. The
power overhead added by the eFPGA is affordable in the IoT
domain, making the integration of such programmable arrays
a viable option for the next generation of edge-computing
nodes. The eFPGA leakage power consumption is reduced

via state-retentive deep sleep states applying RBB, resulting
in a minimum leakage power of 20.5 xW at 0.5 V and
374.2 uW at 0.8- and 1.8-V RBB as shown in Fig. 5(i),
ie., a 5.8x (at 0.8 V) to 18x (at 0.5 V) reduction can
be achieved due to RBB. This result makes the eFPGA
power consumption significantly reduced when not used,
minimizing the integration cost and overhead. Fig. 5(f) shows
how the power consumption changes with respect to the
utilization rate. A design with a parameterizable number of
adders has been implemented in the eFPGA to measure the
power consumption with respect to the utilization rate. When
running at 80 MHz, 0.75 V, results show an energy efficiency
of 0.40 ©xW/MHz/SLC, being leakage dominated when <20%
of resources are utilized. The best energy-efficient point of
the whole system is 46.83 ©W/MHz (eFPGA consumes 28%
of total power) achieved in near threshold at 0.52 V when the
core and the eFPGA are running at 183.6 and 26.38 MHz,
respectively. This result has been measured when the
eight-parallel 32-bit accumulators are mapped on the eFPGA.

VI. USE CASES

To demonstrate the flexibility and efficiency of our heteroge-
neous reconfigurable SoC, three different use cases have been

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

686 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

TABLE IV

RESOURCE UTILIZATION, POWER CONSUMPTION AND OVERALL ENERGY
SAVINGS FOR IMPLEMENTING DIFFERENT USE-CASES ON THE EFPGA

Use Case GPIO FF LUT Power Energy

[mW] Saving [x]
Custom I/0 36 205 289 6.0 2.5
I/0O Accelerator 3 497 457 6.3 24
BNN 0 854 1229 12.5 2.2
CRC 0 20 47 7.5 422

implemented, highlighting the versatility offered by embedded
programmable logic.

A. I/O Subsystem Accelerator

In the context of applications for biosignal processing,
it is common to extract features in the frequency domain to
classify activities sensed from skeletal muscles or the brain
[62]. Wavelet or Fourier transforms are used to convert the
signal from the time to the frequency domain, and then,
features, such as the spectral power, are extracted and used by
a pattern recognition algorithm. For this reason, a peripheral
that extracts relevant information of the signal acquired from
the sensors has been developed and mapped to the eFPGA
to alleviate the preprocessing part of the CPU, which then
classifies the activity starting from the extracted features.
The peripheral accelerator mapped on the eFPGA consists of
an SPI module extended with computational capabilities to
calculate the Haar discrete wavelet transform (HDWT), which
is an attractive algorithm to implement in an eFPGA as it does
not require multipliers [63].

The accelerator is configured to acquire N samples of 16 bit
of raw data coming from ADCs and to store the approx-
imated and detailed wavelet transform coefficients in the
main memory. Also, coefficients can be stored in an 8-bit
format to compress information in the main memory. The
accelerator is programmed at the beginning with the number of
samples to acquire and the output vector pointers. The eFPGA
autonomously loops over SPI transactions and stores to the
main memory, either the raw data or the approximated and
detailed coefficients of the HDWT. When all the N data have
been stored into the memory, an interrupt notifies the core at
the end of the acquisition.

Moreover, a second function has been mapped to the custom
SPI peripheral, namely, to extract 4-bits local binary patterns
from a stream of data coming from sensors, as an algorithmic
approach presented in [64]. In this case, for each data acquired,
the eFPGA reuses the subtractor instantiated for the HDWT
to compare the last two samples. If the last sample is greater
than the previous one, it stores 1 in a 4-bit shift register,
otherwise 0. The accelerator stores into memory a 16-bit
value every four samples, each representing four single sample
overlapping windows. The core takes eight cycles for each
tuple approximate-detail coefficient to compute the HDWT,
whereas it takes 16 cycles for the local binary pattern. The
eFPGA instead computes the features during the acquisition of
the signal from SPI without adding latency overheads. As the
execution time is dominated by the acquisition of the SPI

packets, the eFPGA-based accelerator is 2.4x more energy
efficient than the CPU in both the applications. The design
utilizes 20% of the available SLCs, and it uses a memory
interface port, the APB interface, and four GPIOs (three output
pins and one input pin), and it generates one event.

B. Custom I/O Interface

IoT devices are often connected to custom peripherals that
need more control pins that the usual peripherals as SPI,
UART, 12C, 1285, and so on. In this case, off-chip FPGAs are
selected to implement the control part of the custom peripheral
on one side and to communicate with the MCU with a standard
protocol (e.g., SPI) to the other side. An example of a custom
peripheral is a neuromorphic vision sensor [65] or event-based
audition sensors [66]. Another example where FPGAs are used
to control and transfer data are bridges for off-chip accelerators
(see [67] or [68]). In this context, to illustrate the flexibility of
the MCU+eFPGA combination, a controller for the systolic
long short-term memory recurrent neural network (LSTM-
RNN) accelerator presented in [67] has been implemented in
the eFPGA. The LSTM-RNN accelerator is made of four chips
implemented in UMCL 65-nm technology, and it is used to
classify phonemes in real time. The eFPGA uses 36 GPIOs to
interact with the accelerator using a custom interface.

In the first phase, the eFPGA sends the weights of the
RNN model into the four chips. Then, for every sample
acquired by the MCU I/O subsystem, the CPU extracts
the mel-frequency cepstral coefficients (MFCCs). In parallel,
the eFPGA autonomously fetches the coefficients from the
main memory of the MCU and sends them to the off-chip
accelerator. Once the inference on the accelerator has been
computed, the result is sent back to the eFPGA, which stores
it to the main memory of the MCU and finally notifies the
core with an interrupt. Fig. 6 shows the data flow from the
microphone to the accelerator and back to the MCU. The
utilization of the eFPGA is only 10%. Managing 36 GPIOs
through MCU firmware (of which one is actually the clock
of the off-chip accelerator) would require the core to run
at higher frequency than the eFPGA due to the sequential
nature of software. In this example, the external accelerator is
running at 80 MHz. This means that in the best case, the CPU
should be able to perform ~7 operations in 12.5 ns, which
requires 560 MHz, and 2.5x higher energy consumption than
the eFPGA-based solution.

C. CPU Subsystem Accelerator

In the context of on-the-edge computation, accelerators are
used to increase performance and the energy efficiency of
such devices [69]. For pattern recognition tasks in the visual
domain, deep quantized neural networks are an attractive
model due to their limited memory and computational require-
ments [70], that in extreme cases, use single-bit representation
for weights and data, leveraging simple operations as logic
XOR. Such neural networks are called binary neural networks
(BNNs) [71]. The eFPGA has sufficient resources to allow
these accelerators to be implemented, freeing the core for other
computing tasks.

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

SCHIAVONE et al.: ARNOLD: eFPGA-AUGMENTED RISC-V SoC FOR FLEXIBLE AND LOW-POWER IoT END NODES

687

TABLE V
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART MCU AND EFPGA SYSTEMS

Borgatti Lodi Renzini Fournaris Whatmough Bol This
[29] [30] [31] [52] [46] [11] Work

Technology [nm] 180 130 90 65 16 28 22
1$/D$/SRAM [KB] 8/8/48 8/8/256 -/-/32 8/-/656 2K' /-/4K -/-/64 -/-/512
Voltage Range [V] 1.8 12 12 12 0.5-1.0 04-0.8 0.5-0.8
FPGA IP macro Hard Hard Soft Hard Hard - Hard
FPGA Area [mm?] 8.2 6.0 0.347 - 1.0 - 40
FPGA #LUT 15kGE 15kGE 96 5/4:2 12084 4:1° 8800 6:2 - 6018 4:1
FPGA #FF - - 192 12084 * 22656 - 4096
FPGA #DSP - - - 2° 80 MACs * - 2 vecMACs
Access Mode to GPIOs GPIOs APB, 32 bit GPIOs AXI, 128bit - GPIOs
SoC AHB, 64bit AHB, 32bit AHB, 64 bit - crossbar, 128 bit

RXDMA TX/RX DMA TX/RX DMA - TX/RX DMA
FPGA Lkg Pwr - - - - 12000 - 20.5 - 2178
FPGA Max Freq.” 175 166 50 160 734 - 475
FPGA Pwr Density ™ - - 3472@1.2V° 962@1.2V”° - - 31.98@0.6V "
MCU Lkg Pwr " - - - 7000"" - 1-30 532 - 2386
MCU Max Freq. ™ 175 166 50 166 - 80 600
MCU Pwr Density™ - - 101.22@1.2V° 31@1.2v" . 3@0.4V, 48MHz 11.88@0.49V, 135MHz
MCU+FPGA Pwr Density ™ - 1807.23@1.8V 13594@1.2V° 993@1.2V " - - 46.83@0.52V
FPGA Lkg Control No No No No No - RBB

* Power numbers are in yW ~ * Frequency numbers are in MHz " Power density numbers are in pW/MHz
brief. %2520 x 2 LUTs for the two logic tile and 1088 x 2 for the two DSP tiles [61].
subtraction, and accumulation units. 640 x 2 MACs for the two DSP tile [61].

8 Average measurements. 9 Estimated from [52]. It assumes the FPGA runs at 160 MHz.

12 Number taken from [52]. The authors use the ARM Cortex-M3 power consumption from the datasheet reported in 90 nm LP.

a matrix multiplication at the same time

Output class

®)

Audio
Source

@ SPI
AT

ADC

&
Microphone

Audio Sampled

@24KHz

SPI @1MHz ~21ms ~2 us @50MHz

DMA transfer 512
‘samples

CPU MFCC
ccomputation

eFPQA transfer

010101010 <
inputs {rom mem

eFPGA stores
result to mem

UART Classification

~18us ~38us

Fig. 6. Example of an application where the proposed design is driving
custom protocol off-chip accelerators. Data coming from microphones are
first preprocessed by the MCU and then sent to the off-chip accelerator via
eFPGA for classification.

The BNN accelerator designed for this scope has four inter-
faces toward the main memory to maximize the bandwidth,
and it is a simplified version of the accelerator presented in
[12]. It assumes that input layers and filters are organized
as a 3-D array (number of filters x rows x columns) of
integers, where each integer represents a 32 one-bit channels.
The accelerator is implemented to operate on two 3 x 3
windows with eight filters f0,..., f7 in parallel to simplify
the controlling part, but this is not a limiting factor for the use
case under study. The accelerator is programmed via the APB
interface by the core with the output, input, and filter layer
pointers, the number of rows and columns of the input layer,
and with the START command. The eFPGA starts by fetching
two 32-bit input elements, and then, four 32-bit elements are
fetched in parallel twice to acquire the eight filter elements.

The eFPGA performs the XOR function between the inputs
and the eight filters and accumulates all the single-bit partial
results. The sixteen 3 x 3 convolution results are then com-
pared with a programmed threshold to compute the activation

Two 64 kB of L1 cache plus 2 MBytes of L2 cache.
#6304 x 2 flip-flops for two logic tile. 5024 x 2 for the two DSP tiles [61].

_ ?SmartFusion2 M25010S data available in the product
5 Signed multiplication, dot product, and built-in addition,

73mW reported in the datasheet [61]. Assuming it is for a 1 x 1 tile, [46] uses a 2 X 2 tile, thus 12mW have been reported in the Table.
19 When FF2S0C design is synthesized on the eFPGA

" Includes FPGA leakage power as well.
13 When FF2SOC design is synthesized and running on the eFPGA and the MCU is computing

functions. The accelerator autonomously iterates over the input
rows and columns; then, it sends an interrupt to the core
to signal the end of the computation. During this period,
the core can wait for the accelerator to finish in IDLE
mode to save power or deal with other tasks in parallel (for
example, scheduling the next I/O tasks, elaborating previously
filtered data, and so on). The design occupies 42% of the
SLCs available, and it uses four memory interfaces, the APB
port, and it generates one event. The application consumes
12.5 mW (eFPGA+MCU), and it runs in 371 us at 125 MHz
(3 cycles/bit). Although the core implements custom instruc-
tions to speed up such kernels (as the pop count instruction),
it can run faster (600 MHz against 125 MHz), to implement
the same function the CPU consumes 15 mW, and it runs
in 675 us (26 cyles/bit), with an energy efficiency 2.2 x lower
than the eFPGA.

As a second CPU accelerator, a cyclic redundancy check
(CRC) accelerator has been implemented in the eFPGA to
ensure data integrity and error correction [72]. Such an accel-
erator uses the I/O DMA interface to leverage the linear
address generator already present in the uDMA, thus saving
resources in the eFPGA. The CPU programs the xDMA to
fetch data from the L2 memory and transmits them to the
eFPGA accelerator, which calculates the CRC value. The
accelerator has a register to know the number of data to
process, whereas the read and write pointers are written in
the ©DMA configuration registers. This low area accelerator
consumes only 2% of the SLCs available, and it only uses one
interface toward the x DMA with configuration, TX/RX ports.
The application consumes only 7.5 mW (eFPGA+MCU), and
it runs in 3.7 us at 193 MHz (0.7 cycles/byte) for 1024-
byte data, processing 4 bytes at the same time. The CPU
consumes 15 mW, and it runs in 78 us (45.6 cycles/byte) with
an energy efficiency 42.2x less than the eFPGA. To compare
the performance of the proposed eFPGA-based system with

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

688 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

respect to the Microsemi PolarFire IoT gateway-class FPGA
SoC [73], the power estimator from Microsemi has been used.
Results show a power consumption of 111 mW, 14.8x higher
than our work. The estimation has been performed setting the
same frequency, number of LUTs, and FFs.

Table IV shows the number of GPIOs, number of FFs, and
LUTs required by each use case. Power figures (expressed in
mW) correspond to the system when the eFPGA runs, and the
CPU waits for the result, whereas the final column shows the
energy gained by running the accelerator on the eFPGA rather
than software. In the Custom I/O example, the SW could not
handle the protocol at the speed required, for that example
eFPGA was the only viable solution.

Basic interfaces such as 12C and UART have been imple-
mented on the eFPGA using the DMA interface with about
5% of eFPGA resources, and a more complex parallel camera
interface with full DMA support implementation uses only
12% of available eFPGA resources.

COMPARISON WITH SOA

Table V shows a comparison with various chips reported in
the literature. The table includes heterogeneous reconfigurable
systems composed of MCU and eFPGA, an embedded domain
FPGA SoC, and an advanced low-power MCUs in 28-nm
FDSOI. The standalone MCU [11] has a 4x smaller power
density («W/MHz). However, our MCU features 8x larger
memory capacity and significantly larger peak performance as
well: 7.5 x higher maximum frequency, 3.19 versus 2.33 Core-
mark/MHz, and almost 6x better performance in near-sensor
processing workloads when compared to the ARM Cortex-
MO processor used in [11]. Hence, our energy efficiency on
the targeted application domain is 1.5x better.

The advanced MCU+-eFPGA system presented in [46] is a
high-performance class system implemented in 25 mm?, where
a bigger eFPGA (6x higher leakage power), two application
class 64 bit cores, a quad-core cluster accelerator, and 12x
bigger memory are used (including caches). The eFPGA offers
80 MAC:s blocks, more LUTs, and eFPGA FFs, and provides
remarkable energy efficiency of 312 GOPS/W. Due to the
abundance of DSP blocks in the FPGA fabric, however, this
system is meant to be used in high-performance applications
consuming higher dynamic and leakage power not suitable
for IoT applications. On the other hand, Arnold, although
achieving a lower peak efficiency, is in a power range suitable
for IoT applications (below hundreds of mW). Moreover,
the RBB applied to the FPGA fabric can reduce leakage power
to a value as low as 20.5 4W, more than two orders of
magnitude better than [46]. The Microsemi SmartFusion2 SoC
[28] used in [52] is built in 65 nm. The whole system can run
up to 160 MHz (>3.75x slower than the proposed work), and
it achieves 21x higher power density. The works of Borgatti
et al. [29] and Lodi et al. [30] exploit embedded reconfigurable
datapaths to accelerate DSP patterns of signal processing
applications, achieving remarkable performance and operating
frequency despite the old nodes used for implementation.
With respect to these works and the other heterogeneous
MCU+-eFPGA systems of the same class [29]-[31], the pro-
posed SoC has more than 2.9x better efficiency, more than
3.4x better performance, and more than 2.2x larger capacity.

Moreover, this is the first design offering flexible connections
enabling reconfigurable peripherals, I/O accelerators, shared-
memory accelerators, and supporting state-retentive deep sleep
based on RBB, paving the way for flexible fully programmable
IoT end nodes.

VII. CONCLUSION

In this article, we presented Arnold, an RISC-V-based
MCU extended with an eFPGA for flexible power-constraints
energy-efficient IoT devices. The system has built-in
GF22FDX, it occupies 9 mm?, and it leverages body bias to
tune performance—power trades off. The eFPGA is a 32 x 32
array macro provided by QuickLogic connected to the rest of
the system through four parallel memory interfaces (128 bit
per transaction), a TX/RX I/O DMA interface, 16 events to
interact with the CPU, GPIOs, and APB. This article shows
how the eFPGA can be used to extend and accelerate the
SoC peripheral subsystem, as well as a CPU accelerator.
The eFPGA has more than 6k LUTs and 4k FFs, enough
to implement standard and custom peripherals used in the
IoT domain and simple accelerators to enhance the energy
efficiency of the SoC. It achieves 46.83 uW/MHz, top in
class in the mW domain of IoT devices. The CPU runs up to
600 MHz (620 with FBB), more than 7 x faster than the best
energy efficient MCU. Leakage power of the whole system
can be as low as 552 uW when the MCU runs at 0.5 V,
and the eFPGA is kept in state retentive deep-sleep via RBB.
This article shows that integrating an eFPGA in an MCU in
GF22FDX gives [oT devices the high versatility needed for
extended product life and shorter time-to-market, still without
waiving performance, power, and energy efficiency.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput. (MCC), 2012, pp. 13-16.

[2] A. A. Shkel and E. S. Kim, “Continuous health monitoring with
resonant-microphone-array-based wearable stethoscope,” IEEE Sensors
J., vol. 19, no. 12, pp. 4629-4638, Jun. 2019.

[3] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and
L. Benini, “A 64-mW DNN-based visual navigation engine for
autonomous nano-drones,” [EEE Internet Things J., vol. 6, no. 5,
pp- 8357-8371, Oct. 2019.

[4] W. Xia, Y. Zhou, X. Yang, K. He, and H. Liu, “Toward portable hybrid
surface electromyography/A-mode ultrasound sensing for human—
machine interface,” IEEE Sensors J., vol. 19, no. 13, pp. 5219-5228,
Jul. 2019.

[5] A. Casson, D. Yates, S. Smith, J. Duncan, and E. Rodriguez-Villegas,
“Wearable electroencephalography,” IEEE Eng. Med. Biol. Mag., vol. 29,
no. 3, pp. 44-56, May 2010.

[6] D. Rossi, C. Mucci, M. Pizzotti, L. Perugini, R. Canegallo, and
R. Guerrieri, “Multicore signal processing platform with heterogeneous
configurable hardware accelerators,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 9, pp. 1990-2003, Sep. 2014.

[71 R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming Moore’s law through
energy efficient integrated circuits,” Proc. IEEE, vol. 98, no. 2,
pp. 253-266, Feb. 2010.

[8] D. Rossi et al., “Energy-efficient near-threshold parallel computing: The
PULPV2 cluster,” IEEE Micro, vol. 37, no. 5, pp. 20-31, Sep. 2017.

[9]1 A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.Wolf:

An energy-precision scalable parallel ultra low power SoC for IoT edge

processing,” IEEE J. Solid-State Circuits, vol. 54, no. 7, pp. 1970-1981,

Jul. 2019.

D. Bol et al., “Sleepwalker: A 25-MHz 0.4-V sub mm? 7-xW/MHz

microcontroller in 65-nm Ip/gp CMOS for low-carbon wireless sensor

nodes,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 20-32, Jan. 2013.

[10]

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

SCHIAVONE et al.: ARNOLD: eFPGA-AUGMENTED RISC-V SoC FOR FLEXIBLE AND LOW-POWER IoT END NODES

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

D. Bol et al., “19.6 A 40-to-80 MHz sub-4W/MHz ULV cortex-M0O
MCU SoC in 28 nm FDSOI with dual-loop adaptive back-bias generator
for 20us wake-up from deep fully retentive sleep mode,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019,
pp. 322-324.
F. Conti, P. D. Schiavone, and L. Benini, “XNOR neural engine: A
hardware accelerator IP for 21.6-fJ/op binary neural network inference,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp- 2940-2951, Nov. 2018.
R. Bansal and A. Karmakar, “Closely-coupled lifting hardware for
efficient DWT computation in an SoC,” J. Signal Process. Syst., vol. 92,
pp. 225-237, Jul. 2019.
M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara:
A 1-GHz+ scalable and energy-efficient RISC-V vector processor with
multiprecision floating-point support in 22-nm FD-SOL,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 2, pp. 530-543,
Feb. 2020.
T. Fritzmann, U. Sharif, D. Muller-Gritschneder, C. Reinbrecht,
U. Schlichtmann, and J. Sepulveda, “Towards reliable and secure post-
quantum co-processors based on RISC-V,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 1148-1153.
D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking
network accelerator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 22, no. 12, pp. 2621-2628, Dec. 2014.
A. Jafari, A. Ganesan, C. S. K. Thalisetty, V. Sivasubramanian,
T. Oates, and T. Mohsenin, “SensorNet: A scalable and low-power
deep convolutional neural network for multimodal data classification,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 274-287,
Jan. 2019.
X. Yu et al., “A data-center FPGA acceleration platform for convolu-
tional neural networks,” in Proc. 29th Int. Conf. Field Program. Log.
Appl. (FPL), Sep. 2019, pp. 151-158.
H. Chen, S. Madaminov, M. Ferdman, and P. Milder, “Sorting large data
sets with FPGA-accelerated samplesort,” in Proc. IEEE 27th Annu. Int.
Symp. Field-Programmable Custom Comput. Mach. (FCCM), Apr. 2019,
. 326.
% U. A. Khan and M. Benaissa, “High-speed and low-latency ECC
processor implementation Over GF(2™) on FPGA,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 25, no. 1, pp. 165-176, Jan. 2017.
J. Liao et al., “FPGA implementation of a Kalman-based motion esti-
mator for levitated nanoparticles,” IEEE Trans. Instrum. Meas., vol. 68,
no. 7, pp. 2374-2386, Jul. 2019.
H. Homulle, S. Visser, and E. Charbon, “A cryogenic 1 GSa/s, soft-core
FPGA ADC for quantum computing applications,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 63, no. 11, pp. 1854-1865, Nov. 2016.
A. Jafari, N. Buswell, M. Ghovanloo, and T. Mohsenin, “A low-power
wearable stand-alone tongue drive system for people with severe dis-
abilities,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 1, pp. 58-67,
Feb. 2018.
P. Anagnostou et al., “Torpor: A power-aware HW scheduler for energy
harvesting 10T SoCs,” in Proc. 28th Int. Symp. Power Timing Modeling,
Optim. Simulation (PATMOS), Jul. 2018, pp. 54-61.
V. Rosello, J. Portilla, and T. Riesgo, “Ultra low power FPGA-based
architecture for wake-up radio in wireless sensor networks,” in Proc.
37th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Nov. 2011,
pp- 3826-3831.
I. Williams, S. Luan, A. Jackson, and T. G. Constandinou, “Live
demonstration: A scalable 32-channel neural recording and real-time
FPGA based spike sorting system,” in Proc. IEEE Biomed. Circuits Syst.
Conf. (BioCAS), Oct. 2015, pp. 1-5.
Xilinx: Zyng-7000 SoC. Xilinx ds190-Zyng-7000 datasheet. [Online].
Available: https://www.xilinx.com/support/documentation/data_sheets/
ds190-Zyng-7000-Overview.pdf
SmartFusion: SmartFusion2 SoC. Accessed: Feb. 17, 2021.
[Online]. Available: https://www.microsemi.com/product-directory/soc-
fpgas/1692-smartfusion2
M. Borgatti, F. Lertora, B. Foret, and L. Cali, “A reconfigurable sys-
tem featuring dynamically extensible embedded microprocessor, FPGA,
and customizable 1/0,” IEEE J. Solid-State Circuits, vol. 38, no. 3,
pp. 521-529, Mar. 2003.
A. Lodi et al., “XiSystem: A XiRisc-based SoC with reconfigurable
10 module,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 85-96,
Jan. 2006.
F. Renzini, C. Mucci, D. Rossi, E. F. Scarselli, and R. Canegallo, “A fully
programmable eFPGA-augmented SoC for smart power applications,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 2, pp. 489-501,
Feb. 2020.
NXP: Power Consumption and Measurement of i. MXRT1050. Accessed:
Feb. 17, 2021. [Online]. Available: https://www.nxp.com/docs/en/
application-note/AN12094.pdf

(33]

[34]

[35]

[36]

[37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[571

[58]

[59]

689
STMicroelectronics: STM321L476xx Datasheet. Accessed: Feb. 17,
2021. [Online]. Available: https://www.st.com/resource/en/datasheet/

stm321476je.pdf
P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: An ultra-low-power PULPissimo SoC in 22 nm
FDX,” in Proc. IEEE SOI-3D-Subthreshold Microelectron. Technol.
Unified Conf. (S3S), Oct. 2018, pp. 1-3.
Microsemi IGLOO Nano Low Power Flash FPGAs Datasheet. Accessed:
Feb. 17, 2021. [Online]. Available: https://www.microsemi.com
Lattice Semiconductor iCE40 UltraLite Family Data Sheet. Accessed:
Feb. 17, 2021. [Online]. Available: http://www.latticesemi.com
Menta: eFPGA IP Cores. Accessed: Feb. 17, 2021. [Online]. Available:
https://www.menta-efpga.com/efpga-ips
Speedcore FPGA Datasheet. Achronix Speedcore eFPGA. [Online].
Available: https://www.achronix.com/sites/default/files/docs/Speedcore_
Gen4_eFPGA_Datasheet_DS012.pdf
Flex-Logix eFPGA. [Online]. Available: https://flex-logix.com/efpga/
Quicklogic: ArcticPro 2 eFPGA. Accessed: Feb. 17, 2021. [Online].
Available: https://www.quicklogic.com/products/efpga/arcticpro-2/
NXP: LMX 7ULP Applications Processor Consumer Products,
Datasheet, NXP Semicond., Eindhoven, The Netherlands, 2019.
Silicon Labs: EFM32 Giant Gecko 11 32bit Microcontrollers, Datasheet,
Silicon Labs Inc., Austin, TX, USA, 2019.
Xilinx: Virtex Ultrascale+. [Online]. Available: https://www.xilinx.com
GAPS8 Product Brief. GreenWaves Technology: GAPS8 PRODUCT
BRIEF. [Online]. Available: https:/gwt-website-files.s3.eu-central-
1.amazonaws.com/Product+Brief+GAP8+-+V1_9.pdf
F. Conti et al., “An 10T endpoint system-on-chip for secure and energy-
efficient near-sensor analytics,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 64, no. 9, pp. 2481-2494, Sep. 2017.
P. N. Whatmough et al., “A 16 nm 25 mm? SoC with a 54.5x
flexibility-efficiency range from dual-core arm cortex-A53 to eFPGA and
cache-coherent accelerators,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. C34-C35.
P. Davide Schiavone et al., “Slow and steady wins the race? A
comparison of ultra-low-power RISC-V cores for Internet-of-Things
applications,” in Proc. 27th Int. Symp. Power Timing Modeling, Optim.
Simulation (PATMOS), Sep. 2017, pp. 1-8.
B. Pandey et al., “Performance evaluation of FIR filter after implemen-
tation on different FPGA and SOC and its utilization in communication
and network,” Wireless Pers. Commun., vol. 95, no. 2, pp. 375-389,
Jul. 2017.
W. Qiao, Z. Fang, M.-C.-F. Chang, and J. Cong, “An FPGA-based BWT
accelerator for Bzip2 data compression,” in Proc. IEEE 27th Annu. Int.
Symp. Field-Programmable Custom Comput. Mach. (FCCM), Apr. 2019,
pp- 96-99.
A. Di Mauro, F. Conti, and L. Benini, “An ultra-low power address-
event sensor interface for energy-proportional Time-to-Information
extraction,” in Proc. 54th Annu. Design Autom. Conf., Jun. 2017,
. 1-6.
_IFP Gomes, S. Pinto, T. Gomes, A. Tavares, and J. Cabral, “Towards
an FPGA-based edge device for the Internet of Things,” in Proc.
IEEE 20th Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2015,
. 1-4.
gp P. Fournaris, C. Alexakos, C. Anagnostopoulos, C. Koulamas, and
A. Kalogeras, “Introducing hardware-based intelligence and reconfigura-
bility on industrial IoT edge nodes,” IEEE Design Test, vol. 36, no. 4,
pp- 15-23, Aug. 2019.
M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions
for scalable IoT endpoint devices,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 25, no. 10, pp. 2700-2713, Oct. 2017.
A. Waterman et al., “The RISC-V instruction set manual,” RISC-V Int.
Assoc., Ziirich, Switzerland, Tech. Rep., 2019, vol. 1.
A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A fully-synthesizable
single-cycle interconnection network for shared-L1 processor clusters,”
in Proc. Design, Autom. Test Eur., Mar. 2011, pp. 1-6.
A. Pullini, D. Rossi, G. Haugou, and L. Benini, “4DMA: An
autonomous I/O subsystem for 0T end-nodes,” in Proc. 27th Int. Symp.
Power Timing Modeling, Optim. Simulation (PATMOS), Sep. 2017,
. 1-8.
pr E. Bellasi and L. Benini, “Smart energy-efficient clock synthesizer for
duty-cycled sensor SoCs in 65 nm/28 nm CMOS,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 64, no. 9, pp. 2322-2333, Sep. 2017.
A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L. Benini,
“Pushing on-chip memories beyond reliability boundaries in microp-
ower machine learning applications,” in IEDM Tech. Dig., Dec. 2019,
. 30.
1% Zaruba, F. Schuiki, S. Mach, and L. Benini, “The floating point
trinity: A multi-modal approach to extreme energy-efficiency and perfor-
mance,” in Proc. 26th IEEE Int. Conf. Electron., Circuits Syst. (ICECS),
Nov. 2019.

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

690

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

D. Rossi et al, “A 60 GOPS/W, -1.8 V to 0.9 V body bias
ULP cluster in 28 nm UTBB FD-SOI technology,” Solid-State
Electron., vol. 117, pp. 170-184, Mar. 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0038110115003342
EFLX: EFLX 4K Product Brief for TSMC
12FFC+/12FFC/16FFC+/FFC/FF+. Accessed: Feb. 17, 2021.
[Online]. Available: https://flex-logix.com/efpga/

V. J. Kartsch, S. Benatti, P. D. Schiavone, D. Rossi, and L. Benini, “A
sensor fusion approach for drowsiness detection in wearable ultra-low-
power systems,” Inf. Fusion, vol. 43, pp. 6676, Sep. 2018.

F. H. Elfouly, M. I. Mahmoud, M. I. Dessouky, and S. Deyab,
“Comparison between Haar and Daubechies wavelet transformations on
FPGA technology,” Int. J. Comput., Inf., Syst. Sci., Eng., vol. 2, no. 1,
pp. 96-101, 2008.

A. Burrello, L. Cavigelli, K. Schindler, L. Benini, and A. Rahimi,
“Laelaps: An energy-efficient seizure detection algorithm from long-
term human iEEG recordings without false alarms,” in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 752-757.
Inivation. (2020). Inivation Dynamic Vision Platform. [Online]. Avail-
able: https://inivation.com/dvp/

S. Liu, A. van Schaik, B. A. Minch, and T. Delbruck, “Asynchronous
binaural spatial audition sensor with 2x64x4 channel output,” /EEE
Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 453—464, Aug. 2014.
F. Conti, L. Cavigelli, G. Paulin, I. Susmelj, and L. Benini, “Chipmunk:
A systolically scalable 0.9 mm?, 3.08Gop/s/mW @ 1.2 mW accelerator
for near-sensor recurrent neural network inference,” in Proc. IEEE
Custom Integr. Circuits Conf. (CICC), Apr. 2018, pp. 1-4.

J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173-185, Jan. 2019.

D. Chen, J. Cong, S. Gurumani, W. Hwu, K. Rupnow, and Z. Zhang,
“Platform choices and design demands for IoT platforms: Cost, power,
and performance tradeoffs,” IET Cyber-Phys. Syst.: Theory Appl., vol. 1,
no. 1, pp. 70-77, Dec. 2016.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869-6898, 2017.

M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123-3131.

E. Tsimbalo, X. Fafoutis, and R. J. Piechocki, “CRC error correc-
tion in IoT applications,” IEEE Trans. Ind. Informat., vol. 13, no. 1,
pp. 361-369, Feb. 2017.

PolarFire SoC Advance Product Overview. Accessed: Feb. 17, 2021.
[Online]. Available: https://www.microsemi.com/product-directory/soc-
fpgas/5498-polarfire-soc-fpga#resources

Pasquale Davide Schiavone received the B.Sc. and
M.Sc. degrees in computer engineering from the
Polytechnic of Turin, Turin, Italy, in 2013 and 2016,
respectively. He is currently working toward the
Ph.D. degree at the Integrated Systems Laboratory,
ETH Ziirich, Ziirich, Switzerland.

In 2018, he was a Ph.D. Visiting Student with
the Centre for Bio-Inspired Technology, Imperial
College London, London, U.K. His research interests
include datapath blocks design, low-power micro-
processors in multicore systems and deep-learning

architectures for energy-efficient systems.

Davide Rossi (Member, IEEE) received the Ph.D.
degree from the University of Bologna, Bologna,
Italy, in 2012.

He has been a Post-Doctoral Researcher with the
Department of Electrical, Electronic and Informa-
tion Engineering “Guglielmo Marconi,” University
of Bologna, since 2015, where he currently holds
an assistant professor position. His research interests
focus on energy-efficient digital architectures in the
domain of heterogeneous and reconfigurable multi-
core and many-core systems on a chip.

Alfio Di Mauro received the M.Sc. degree in
electronic engineering from the Electronics and
Telecommunications Department (DET), Politecnico
di Torino, Turin, Italy, in 2016. He is currently work-
ing toward the Ph.D. degree in electrical engineering
at the Integrated Systems Laboratory, ETH Ziirich,
Ziirich, Switzerland.

In January 2017, he started to work as a Researcher
Assistant at the Integrated System Laboratory (IIS),
Swiss Federal Institute of Technology of Zurich,
Ziirich, Switzerland, in the group led by Prof. Luca

Benini. His research is mainly focused on the design of digital ultralow-power
(ULP) system-on-chip (SoC) for event-driven edge computing.

Frank K. Giirkaynak received the B.Sc. and M.Sc.
degrees in electrical engineering from the Istanbul
Technical University, Istanbul, Turkey, and the Ph.D.
degree in electrical engineering from ETH Ziirich,
Ziirich, Switzerland, in 2006.

He is currently working as a Senior Researcher at
the Integrated Systems Laboratory, ETH Ziirich. His
research interests include digital low-power design
and cryptographic hardware.

Timothy Saxe received the B.S.E.E. degree from
North Carolina State University, Raleigh, NC, USA,
in 1975, and the M.S.E.E. degree and the Ph.D.
degree in electrical engineering from Stanford Uni-
versity, Stanford, CA, USA, in 1976 and 1980,
respectively.

He joined QuickLogic Corporation, San Jose, CA,
USA, in May 2001. He has held a variety of exec-
utive leadership positions at QuickLogic, including
the Vice President of Engineering and the Vice
President of Software Engineering. He has served as

our Senior Vice President of Engineering and the Chief Technology Officer
since August 2016 and the Senior Vice President and the Chief Technology
Officer since November 2008.

Mao Wang received the B.S. degree in electrical
engineering and the M.S. degree in engineering man-
agement from Santa Clara University Santa Clara,
CA, USA, in 1998 and 2000, respectively.

He is currently the Senior Director of Product
at QuickLogic Corporation, San Jose, CA, USA,
with the mission of democratizing embedded field-
programmable gate array (FPGA) into every system-
on-chip (SoC).

Ket Chong Yap received the B.S. degree in electri-
cal engineering from Iowa State University, Ames,
IA, USA, in 1990.

He joined QuickLogic Corporation, San Jose, CA,
USA, in September 1999, actively participating in
QuickLogic field-programmable gate array (FPGA)
product development. Prior to joining QuickLogic,
he was with EXEL Microelectronics, San Jose, CA,
USA, as a Quality Assurance Engineer from 1990 to
1991, a Product/Test Engineer from 1992 to 1994,
and a Design Engineer from 1995 to 1996, working

on EEPROM technology. He was involved with Programmable Microelectron-
ics Corporation, San Jose, CA, USA, from 1997 to 1998, working on FLASH

memory.

Luca Benini (Fellow, IEEE) received the Ph.D.
degree from Stanford University, Stanford, CA,
USA, in 1997.

He served as a Chief Architect at STmicroelec-
tronics, Grenoble, France. He holds the Chair of
Digital Circuits and Systems, ETH Ziirich, Ziirich,
Switzerland, and is currently a Full Professor with
the Universita di Bologna, Bologna, Italy. He has
published more than 1000 peer-reviewed articles and
five books. His research interests are in energy-
efficient parallel computing systems, smart sensing

microsystems, and machine learning hardware.

Dr. Benini is a Fellow of the Association for Computing Machinery and
a member of the Academia Europaea. He was a recipient of the 2016 IEEE
CAS Mac Van Valkenburg Award.

Authorized licensed use limited to: Timothy Saxe. Downloaded on April 01,2021 at 01:10:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

