Applications Overview

The ArcticLink III BX5 solution platform is a display interface bridge device enabling the connection of a RGB, MIPI 2-lane, or MIPI 4-lane processor with a RGB, MIPI 2-lane, MIPI 4-lane, LVDS 1-lane, or LVDS 2-lane display, with up to a maximum resolution of 1920x1200 (60 fps). Featuring a small 4.5 mm x 4.5 mm package, the ArcticLink III BX5 solution platform is a low power solution designed for smartphones and tablets.

Platform Highlights

Serial Peripheral Interface (SPI) Master
• Serial interface to control sensors, peripherals, and/or displays.

Onboard Clock Generation
• Integrated, very low power phase-locked loop (PLL) for generating the clocks.

I2C Client
• CPU interface for configuring and controlling internal registers and look-up tables (LUT).

Small Form Factor Packaging
• 120-ball, 4.5 mm x 4.5 mm WLCSP, 0.4 mm ball pitch.
ArcticLink III BX5 Solution Platform Variants

The ArcticLink III BX5 solution platform features eight distinct variants as described in Table 1.

Table 1: ArcticLink III BX5 Solution Platform Variants

<table>
<thead>
<tr>
<th>QuickLogic Part Order Number</th>
<th>CSSP Name</th>
<th>Device Input</th>
<th>Device Output</th>
<th>Max Resolution (60 FPS)</th>
<th>Primary Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSP-BMFDN120</td>
<td>BX5B3D</td>
<td>MIPI-4a</td>
<td>LVDS-2b</td>
<td>1920 x 1200</td>
<td>Smartphones and tablet computers</td>
</tr>
<tr>
<td>CSSP-BPFDN120</td>
<td>BX5A1D</td>
<td>RGB</td>
<td>LVDS-1c</td>
<td>1280 x 800</td>
<td>Smartphones and tablet computers</td>
</tr>
<tr>
<td>CSSP-BQFDN120</td>
<td>BX5A3D</td>
<td>RGB</td>
<td>LVDS-2</td>
<td>1920 x 1200</td>
<td>Smartphones and tablet computers</td>
</tr>
<tr>
<td>CSSP-BLFDN120</td>
<td>BX5B1D</td>
<td>MIPI-2d</td>
<td>LVDS-1</td>
<td>1280 x 800</td>
<td>Smartphones and tablet computers</td>
</tr>
<tr>
<td>CSSP-BGFDN120</td>
<td>BX5B3A</td>
<td>MIPI-4</td>
<td>RGB</td>
<td>1920 x 1200</td>
<td>Smartphones and tablet computers</td>
</tr>
<tr>
<td>CSSP-BEFDN120</td>
<td>BX5B2A</td>
<td>MIPI-2</td>
<td>RGB</td>
<td>1366 x 768</td>
<td>Smartphones and tablet computers</td>
</tr>
<tr>
<td>CSSP-BJFDN120</td>
<td>BX5A3B</td>
<td>RGB</td>
<td>MIPI-4</td>
<td>1920 x 1200</td>
<td>Smartphones and tablet computers</td>
</tr>
<tr>
<td>CSSP-BHFDN120</td>
<td>BX5A2B</td>
<td>RGB</td>
<td>MIPI-2</td>
<td>1366 x 768</td>
<td>Smartphones and tablet computers</td>
</tr>
</tbody>
</table>

a MIPI-4: Four lane MIPI interface.
b LVDS-2: Dual link LVDS interface (eight data differential pairs and two clock differential pairs).
c LVDS-1: Single link LVDS interface (four data differential pairs and one clock differential pair).
d MIPI-2: Two lane MIPI interface.
Data Paths

BX5B3D — MIPI-4 to LVDS-2

Use Case

Data path input and outputs are:
- Input – MIPI 4-lane
- Output – LVDS dual link (four data differential pairs and one clock differential pair)

Control path input and outputs are:
- Input – I²C
- Output – SPI

Maximum resolution is WUXGA (1920 x 1200) at 24 bpp at 60 fps. The speed is limited by LVDS bandwidth.
Use Case

Data path input and outputs are:

- Input – RGB
- Output – LVDS single link (four data differential pairs and one clock differential pair)

Control path input and outputs are:

- Input – I2C
- Output – SPI

Maximum resolution is 1280 x 800 at 24 bpp at 60 fps. The speed is limited by LVDS bandwidth, and resolution is dependent on display blanking and pixel clock.
BX5A3D — RGB to LVDS-2

Use Case

Data path input and outputs are:
- Input – RGB
- Output – LVDS dual link (eight data differential pairs and two clock differential pairs)

Control path input and outputs are:
- Input – I2C
- Output – SPI

Maximum resolution is 1920 x 1200 at 24 bpp at 60 fps. The speed is limited by LVDS bandwidth.
Use Case

Data path input and outputs are:

- Input – MIPI 2-lane
- Output – LVDS single link (four data differential pairs and one clock differential pair)

Control path input and outputs are:

- Input – I2C and/or MIPI display bus interface (DBI)
- Output – SPI

Maximum resolution is 1280 x 800 at 24 bpp at 60 fps. The speed is limited by LVDS bandwidth, and resolution is dependent on display blanking and pixel clock.
BX5B3A — MIPI-4 to RGB

Use Case

Data path input and outputs are:

- Input – MIPI 4-lane
- Output – RGB

Control path input and outputs are:

- Input – I²C and/or MIPI display bus interface (DBI)
- Output – SPI

Maximum resolution is 1920 x 1200 at 24 bpp at 60 fps. The speed is limited by MIPI bandwidth.
Use Case

Data path input and outputs are:

- **Input** – MIPI 2-lane
- **Output** – RGB

Control path input and outputs are:

- **Input** – I²C and/or MIPI DBI)
- **Output** – SPI

Maximum resolution is 1366 x 768 at 24 bpp at 60 fps. The speed is limited by MIPI bandwidth.
Use Case

Data path input and outputs are:

- Input – RGB
- Output – MIPI 4-lane

Control path input and outputs are:

- Input – I²C
- Output – SPI and/or MIPI DBI

Maximum resolution is 1920 x 1200 at 24 bpp at 60 fps. The speed is limited by MIPI bandwidth.
Use Case

Data path input and outputs are:

- **Input** – RGB
- **Output** – MIPI 2-lane

Control path input and outputs are:

- **Input** – I²C
- **Output** – SPI and/or MIPI DBI

Maximum resolution is 1366 x 768 at 24 bpp at 60 fps. The speed is limited by MIPI bandwidth.
Power Consumption

Table 2 and Table 3 shows the power consumption in various operating modes. The minimum PCLK possible is assumed for these measurements.

Table 2: BX5Axx Power Consumption (mW) at 60 fps

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QVGA</td>
<td>320</td>
<td>240</td>
<td>22.5</td>
<td>22.5</td>
<td>26.2</td>
<td>26.3</td>
<td>64.3</td>
<td>64.3</td>
<td>133.6</td>
<td>134.0</td>
</tr>
<tr>
<td>VGA</td>
<td>640</td>
<td>480</td>
<td>25.8</td>
<td>26.5</td>
<td>29.5</td>
<td>29.6</td>
<td>65.4</td>
<td>65.4</td>
<td>135.8</td>
<td>136.2</td>
</tr>
<tr>
<td>WVGA</td>
<td>854</td>
<td>480</td>
<td>27.7</td>
<td>28.6</td>
<td>30.8</td>
<td>30.9</td>
<td>65.8</td>
<td>65.8</td>
<td>136.7</td>
<td>137.1</td>
</tr>
<tr>
<td>PAL</td>
<td>768</td>
<td>576</td>
<td>28.7</td>
<td>29.6</td>
<td>31.3</td>
<td>31.4</td>
<td>66.0</td>
<td>66.0</td>
<td>137.1</td>
<td>137.5</td>
</tr>
<tr>
<td>SVGA</td>
<td>800</td>
<td>600</td>
<td>29.1</td>
<td>30.4</td>
<td>31.8</td>
<td>32.1</td>
<td>66.1</td>
<td>66.1</td>
<td>137.4</td>
<td>137.9</td>
</tr>
<tr>
<td>XGA</td>
<td>1,024</td>
<td>768</td>
<td>34.3</td>
<td>37.0</td>
<td>36.5</td>
<td>37.5</td>
<td>67.5</td>
<td>67.5</td>
<td>140.3</td>
<td>140.8</td>
</tr>
<tr>
<td>HD 720p</td>
<td>1,280</td>
<td>720</td>
<td>36.4</td>
<td>39.5</td>
<td>38.4</td>
<td>39.4</td>
<td>68.0</td>
<td>68.0</td>
<td>141.3</td>
<td>141.8</td>
</tr>
<tr>
<td>WXGA</td>
<td>1,366</td>
<td>768</td>
<td>38.7</td>
<td>42.1</td>
<td>40.5</td>
<td>41.6</td>
<td>-</td>
<td>-</td>
<td>142.5</td>
<td>142.9</td>
</tr>
<tr>
<td>SXGA</td>
<td>1,280</td>
<td>960</td>
<td>42.2</td>
<td>-</td>
<td>43.8</td>
<td>45.3</td>
<td>-</td>
<td>-</td>
<td>144.8</td>
<td>145.2</td>
</tr>
<tr>
<td>SXGA</td>
<td>1,280</td>
<td>1,024</td>
<td>43.9</td>
<td>-</td>
<td>44.9</td>
<td>46.6</td>
<td>-</td>
<td>-</td>
<td>145.5</td>
<td>146.0</td>
</tr>
<tr>
<td>SXGA+</td>
<td>1,400</td>
<td>1,050</td>
<td>46.0</td>
<td>-</td>
<td>46.9</td>
<td>48.5</td>
<td>-</td>
<td>-</td>
<td>146.6</td>
<td>147.1</td>
</tr>
<tr>
<td>UXGA</td>
<td>1,600</td>
<td>1,200</td>
<td>-</td>
<td>-</td>
<td>59.1</td>
<td>61.5</td>
<td>-</td>
<td>-</td>
<td>163.2</td>
<td>163.7</td>
</tr>
<tr>
<td>HD 1080</td>
<td>1,920</td>
<td>1,080</td>
<td>-</td>
<td>-</td>
<td>61.5</td>
<td>63.6</td>
<td>-</td>
<td>-</td>
<td>164.3</td>
<td>164.8</td>
</tr>
<tr>
<td>WUXGA</td>
<td>1,920</td>
<td>1,200</td>
<td>-</td>
<td>-</td>
<td>65.6</td>
<td>67.8</td>
<td>-</td>
<td>-</td>
<td>166.9</td>
<td>167.4</td>
</tr>
</tbody>
</table>

a. MIPI DBI command mode is limited to FWVGA (854x480) maximum.

b. Power measurement is shown with a 3.3 V RGB I/O. If a 1.8 V RGB I/O is used, power consumption drops approximately 5 mW at 1080P (1920x1080) resolution.
Table 3: BX5Bxx Power Consumption (mW) at 60 fps\(^a\)

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Display Width (pixels)</th>
<th>Display Height (pixels)</th>
<th>BX5B2A 18 bpp</th>
<th>BX5B2A 24 bpp</th>
<th>BX5B3A 18 bpp</th>
<th>BX5B3A 24 bpp</th>
<th>BX5B1D 18 bpp</th>
<th>BX5B1D 24 bpp</th>
<th>BX5B3D 18 bpp</th>
<th>BX5B3D 24 bpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>QVGA</td>
<td>320</td>
<td>240</td>
<td>18.7</td>
<td>19.9</td>
<td>17.1</td>
<td>19.7</td>
<td>71.6</td>
<td>71.9</td>
<td>130.1</td>
<td>131.6</td>
</tr>
<tr>
<td>VGA</td>
<td>640</td>
<td>480</td>
<td>26.5</td>
<td>30.7</td>
<td>24.2</td>
<td>28.1</td>
<td>74.1</td>
<td>74.5</td>
<td>133.6</td>
<td>135.1</td>
</tr>
<tr>
<td>WVGA</td>
<td>854</td>
<td>480</td>
<td>29.7</td>
<td>34.4</td>
<td>27.1</td>
<td>31.4</td>
<td>75.1</td>
<td>75.6</td>
<td>136.5</td>
<td>138.6</td>
</tr>
<tr>
<td>PAL</td>
<td>768</td>
<td>576</td>
<td>31.3</td>
<td>36.2</td>
<td>28.6</td>
<td>33.1</td>
<td>75.6</td>
<td>76.1</td>
<td>135.9</td>
<td>137.4</td>
</tr>
<tr>
<td>SVGA</td>
<td>800</td>
<td>600</td>
<td>32.4</td>
<td>37.7</td>
<td>29.6</td>
<td>34.4</td>
<td>76.0</td>
<td>76.5</td>
<td>136.4</td>
<td>138.0</td>
</tr>
<tr>
<td>XGA</td>
<td>1,024</td>
<td>768</td>
<td>42.5</td>
<td>49.4</td>
<td>38.8</td>
<td>45.1</td>
<td>79.4</td>
<td>79.9</td>
<td>141.1</td>
<td>142.7</td>
</tr>
<tr>
<td>HD 720</td>
<td>1,280</td>
<td>720</td>
<td>46.3</td>
<td>53.9</td>
<td>42.3</td>
<td>49.2</td>
<td>80.5</td>
<td>81.2</td>
<td>142.8</td>
<td>144.4</td>
</tr>
<tr>
<td>WXGA</td>
<td>1,366</td>
<td>768</td>
<td>50.1</td>
<td>58.4</td>
<td>45.8</td>
<td>53.3</td>
<td>-</td>
<td>-</td>
<td>144.5</td>
<td>146.2</td>
</tr>
<tr>
<td>SXGA</td>
<td>1,280</td>
<td>960</td>
<td>57.1</td>
<td>-</td>
<td>52.1</td>
<td>60.7</td>
<td>-</td>
<td>-</td>
<td>148.0</td>
<td>149.6</td>
</tr>
<tr>
<td>SXGA</td>
<td>1,280</td>
<td>1,024</td>
<td>59.8</td>
<td>-</td>
<td>54.6</td>
<td>63.6</td>
<td>-</td>
<td>-</td>
<td>149.2</td>
<td>150.9</td>
</tr>
<tr>
<td>SXGA+</td>
<td>1,400</td>
<td>1,050</td>
<td>63.4</td>
<td>-</td>
<td>57.9</td>
<td>67.5</td>
<td>-</td>
<td>-</td>
<td>150.9</td>
<td>152.6</td>
</tr>
<tr>
<td>UXGA</td>
<td>1,600</td>
<td>1,200</td>
<td>-</td>
<td>-</td>
<td>70.4</td>
<td>82.1</td>
<td>-</td>
<td>-</td>
<td>157.9</td>
<td>175.7</td>
</tr>
<tr>
<td>HD 1080</td>
<td>1,920</td>
<td>1,080</td>
<td>-</td>
<td>-</td>
<td>74.1</td>
<td>86.5</td>
<td>-</td>
<td>-</td>
<td>174.2</td>
<td>177.8</td>
</tr>
<tr>
<td>WUXGA</td>
<td>1,920</td>
<td>1,200</td>
<td>-</td>
<td>-</td>
<td>80.8</td>
<td>94.2</td>
<td>-</td>
<td>-</td>
<td>177.9</td>
<td>181.5</td>
</tr>
</tbody>
</table>

\(^a\) MIPI DBI command mode is limited to FWVGA (854x480) maximum.
Figure 9: BX5 Solution Platform – CSSP 120 0.4 mm Ball (4.5 mm x 4.5 mm) WLCSP Mechanical Drawing
Contact Information

Phone: (408) 990-4000 (US)
+44 (0) 20 321 3160 (Europe)
+(886) 26-603-8948 (Taiwan)
+(86) 21-2116-0532 (China)
+(81) 3-5875-0547 (Japan)
+(82) 31-601-4225 (Korea)

E-mail: info@quicklogic.com
Sales: America-sales@quicklogic.com
Europe-sales@quicklogic.com
Asia-sales@quicklogic.com
Japan-sales@quicklogic.com
Korea-sales@quicklogic.com

Support: www.quicklogic.com/support
Internet: www.quicklogic.com

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Originator and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>October 2012</td>
<td>Initial production release.</td>
</tr>
</tbody>
</table>
| 1.1 | July 2013 | Paul Karazuba and Kathleen Bylsma
– Updated Contact Information section.
– Removed Thermal Characteristics page.
– Updated maximum resolution for BX5A1D and BX5B1D to 1280 x 800. |
| 1.2 | July 2013 | Paul Karazuba and Kathleen Bylsma
Updated power consumption table for BX5A1D and BX5B1D. |
| 1.3 | June 2016 | Brian Faith and Kathleen Bylsma
Updated QuickLogic Part Order Number to |

Notice of Disclaimer

QuickLogic is providing this design, product or intellectual property "as is.” By providing the design, product or intellectual property as one possible implementation of your desired system-level feature, application, or standard, QuickLogic makes no representation that this implementation is free from any claims of infringement and any implied warranties of merchantability or fitness for a particular purpose. You are responsible for obtaining any rights you may require for your system implementation. QuickLogic shall not be liable for any damages arising out of or in connection with the use of the design, product or intellectual property including liability for lost profit, business interruption, or any other damages whatsoever. QuickLogic products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use QuickLogic products in these types of equipment or applications.

QuickLogic does not assume any liability for errors which may appear in this document. However, QuickLogic attempts to notify customers of such errors. QuickLogic retains the right to make changes to either the documentation, specification, or product without notice. Verify with QuickLogic that you have the latest specifications before finalizing a product design.
Copyright and Trademark Information

Copyright © 2016 QuickLogic Corporation. All Rights Reserved.

The information contained in this document is protected by copyright. All rights are reserved by QuickLogic Corporation. QuickLogic Corporation reserves the right to modify this document without any obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of QuickLogic is prohibited.

QuickLogic and ArcticLink, are registered trademarks, and the QuickLogic logo is a trademark of QuickLogic. Other trademarks are the property of their respective companies.